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Abstract. The squared radius of gyration of percolation clusters are determined in terms of the
clusters’ second spatial moments using the enhanced Hoshen–Kopelman algorithm for square
and triangular lattices containing 2.025× 109 sites. Correlation length exponents and related
exponents as well as their corresponding amplitudes are calculated in terms of the squared radius
of gyration above and below the percolation threshold. A coefficient for cluster compactness that
is based on the squared radius of gyration of a cluster is introduced. That coefficient is compared
with a similar coefficient of compactness that is based on the cluster cyclomatic number.

1. Introduction

Since the introduction of percolation theory, the focus of cluster analysis in Monte Carlo
simulation has been on quantities that can be derived from cluster sizes [1]. Cluster
structure or shape information has received somewhat less attention, possibly, because the
computational tools for calculating structure parameters are not as powerful as those that are
used for determining cluster sizes. Cluster structure calculations usually involve relatively
small lattices when compared with cluster size calculations which very often employ lattices
containing 109 sites or more. For example, Rapaport [2] reported cluster size calculations
for a lattice containing 4.225× 1011 sites.

A very important cluster structure parameter is the squared radius of gyration, which is
a measure for the mean distance between two sites belonging to the same cluster. Stauffer
and Aharony [1] suggested a relationship between the radius of gyration and the fractal
dimension of the lattice. They also suggested relationships between the radius of gyration
and the correlation length and other related squared distance parameters. Other researchers
have provided us with examples of computed cluster structure parameters, which include
perimeters [3], correlation length [4], backbone perimeter [5], and spanning lengths [6]. A
more recent study focuses on exponents for the end-to-end distance distribution between
two cluster sites at criticality [7].

Quandt and Young [8] calculated the gyration tensor to determine the cluster asphericity
parameters of Rudnic and Gaspari [9] for percolation and Ising clusters. They applied the
Hoshen–Kopelman (HK) [10] algorithm to identify clusters. Yet, in their calculations, they
only studied relatively small percolation clusters of sizes 5–4096.

Domb and Stoll [11] introduced the cyclomatic number as a structure parameter. They
used the cyclomatic number, which represents the number of independent cycles in a cluster,
to define a coefficient of cluster compactness.
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Recently, Hoshenet al [12] introduced the enhanced HK (EHK) algorithm for the
structural analysis of clusters in binary lattices. The EHK algorithm was further enhanced
for multiple colour image processing [13]. This enhanced algorithm can be used to calculate
various cluster structure parameters in large lattices with the computational efficiency of the
original HK algorithm [10]. The original HK algorithm makes a single pass through the
lattice inspecting each site sequentially and assigning it with a cluster label. Each cluster
in the lattice is identified by one or more labels. The EHK algorithm generalizes the HK
method of cluster size calculation to the calculation of structural parameters such as spatial
moments, cluster bounding rectangles and perimeters of all clusters in the lattice in a single
pass [12]. To enable the EHK analysis of very large lattices while storing only a small
fraction of the lattices in the computer’s memory, we have used the label recycling method,
denoted as option (c) in [10].

Using the EHK algorithm, in section 2, we provide results for the squared radius of
gyration calculations for lattices containing 2.025× 109 sites where the squared radius of
gyration is determined from the clusters’ spatial moments. We use the squared radius of
gyration to calculate the correlation length and other parameters as suggested by Stauffer and
Aharony [1]. In section 3, we introduce a cluster compactness coefficient, which is based
on the squared radius of gyration, and compare it with the cyclomatic number coefficient
of Domb and Stoll [11]. In section 4, we discuss our computation results.

2. The squared radius of gyration

A general expression for cluster spatial moments,Mk, in d dimensions is

Mk(m(1),m(2), . . . , m(d)) =
∑
i∈k

d∏
µ=1

xm(µ)µ (i) (1)

wherexµ(i) denotes theµth coordinate of theith site of thekth cluster andm(µ) is the
exponent for thexµ coordinate. When allm(µ) = 0, (1) represents the zero moment of the
cluster. This moment denotes the cluster size. The first cluster moment, which defines the
cluster’s centre of mass, for theµth coordinate is

Mk(m(1) = 0, m(2) = 0, . . . , m(µ) = 1, . . . , m(d) = 0). (2)

In a similar fashion, the second spatial cluster moment can be defined. In two dimensions,
this would correspond tox2, y2 andxy terms.

Using the cluster moments, we can calculate the squared radius of gyration,R2
s , given

by:

R2
s =

1

2s2

∑
i,j

|ri − rj |2 (3)

wheres is the size of the cluster,ri andrj are the positions of sitesi andj belonging to
the cluster. The double summation is carried over alli andj sites of the cluster. It can be
shown thatR2

s can be given in terms of the cluster first and second moments [12]:

R2
s =

1

s2

d∑
µ=1

[sX(2)µ − (X(1)µ )2] (4)

whereX(1)µ =
∑

i xµ(i) is the first moment andX(2)µ =
∑

i x
2
µ(i) is the second moment.

In the remainder of this section, we shall use the EHK algorithm calculation of the
squared radius of gyration to test the various relationships for the radius of gyration given
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Figure 1. ln(R2
s ) versus ln(s) for p = 0.592 and for cluster sizes 100 000> s > 30 000 for

45 000× 45 000 lattice.

Table 1. D∗ values for somep values for a square lattice.

Number
p of clusters D∗

0.580 1001 0.887± 0.022
0.585 4064 1.230± 0.005
0.590 4125 1.715± 0.004
0.592 1975 1.782± 0.005

by Stauffer and Aharony [1]. They suggest that at the percolation threshold, the following
relationship exists betweenR2

s ands

R2
s ∝ s1/D (5)

whereD is the fractal dimension.
To test relationship (5), using the EHK algorithm, we computedR2

s values for clusters on
a 45 000× 45 000 simulated square lattice. Figure 1 displays the result of this computation
for p = 0.592 and for cluster sizes 100 000> s > 30 000. The values of the exponent
D∗, which were determined from the slopeT (D∗ = T −1) of the line corresponding to a
logarithmic transformation of (5), are given in table 1 forp = 0.58, 0.585, 0.59, 0.592. (We
denote the exponents asD∗ to distinguish them fromD, which is defined forpc.) Clearly,
theD∗ values increase as the percolation threshold is approached. Atp = 0.592 the mean
value ofD∗ is 1.782 indicating a slow convergence to theDexact value of 91

48 ≈ 1.896 [1].
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D∗ and other parameters reported in this paper were calculated using linear regression
analysis. The error bars of these parameters were derived from the standard deviations in
the linear regression coefficients [14]. For example, the error bar1D∗ for the exponentD∗

is T −21T where1T is the error bar for the gradientT of the regression line.
A Windows 95 166 MHz Pentiumr PC was used for all EHK algorithm computations.

The algorithm was implemented inC. The computation time for each Monte Carlo run
on a 45 000× 45 000 lattice took approximately 60 min and consumed about 3 MB of
RAM. In all simulations free boundary conditions were used. In the simulations, we
used a pseudorandom number generator suggested by Knuth [15]. That generator has a
pseudorandom number sequence cycle that is at least 255− 1 long.

Stauffer and Aharony [1] suggested three different definitions of a lattice averaged
squared radius given in terms ofR2

s . These include the correlation length,ξ2, and two other
radii, which we denote asξ2

2 andξ2
3 , where

ξ2 = 2
∑

s〈R2
s 〉s2ns∑

s s
2ns

(6a)

ξ2
2 =

2
∑

s〈R2
s 〉sns∑

s sns
(6b)

ξ2
3 =

2
∑

s〈R2
s 〉ns∑

s ns
. (6c)

Below pc the summation is carried over all clusters. Abovepc, the contribution of the
largest cluster is excluded from the summation.ns denotes the number of clusters of sizes.
〈R2

s 〉 stands for the mean squared radius of gyration over all clusters of sizes. Nearpc, the
following relationships are expected to hold,ξ = ξ1,W |p−pc|−ν , ξ2 = ξ2,W |p−pc|−(ν−β/2)
andξ3 = ξ3,W |p − pc|−J . ν andβ are the critical exponents for the correlation length and
the infinite cluster probability, respectively.J stands for a proposed exponent for(6c). The
subscriptW for the amplitudesξ1,W , ξ2,W andξ3,W is set toB if p < pc and is set toA if
p > pc.

To calculate the amplitudes and exponents forξ, ξ2 andξ3, 92 Monte Carlo runs were
made on square and triangular lattices containing 45 000×45 000 sites below and abovepc.
Table 2 provides a summary for these run sequences. To ensure that pseudorandom number
sequences do not overlap within a run sequence, the last random number seed of a run was
used to generate a new seed for the next run. Square boundaries were used for the square
lattice simulations and rhombus boundaries were used for the triangular lattice simulation.
In the calculation, we usedpc = 0.5 for the triangular lattice, andpc = 0.592 746 for the
square lattice [1]. Figure 2 gives a log–log plot forξ , ξ2 andξ3 for the square lattice data
belowpc. The amplitudesξI,W and their error bars are determined from the interceptV of
the regression line, such thatξI,W = exp(V ) and1ξI,W = exp(V )1V whereI = 1, 2, 3
and1V is the statistical error forV [14].

Table 2. Simulation run sequences.

Lattice Data points p range

square 32 0.52–0.58
square 19 0.601–0.624
triangular 22 0.425–0.48
triangular 19 0.51–0.5325
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Figure 2. ln(R) versus ln(Dp) whereDp = |pc−p| for 32 runs,p =0.52–0.58 (somep values
are repeated) and 45 000× 45 000 lattice size. WhenR = ξ , corresponding to (6a), data points
shown as× and —— denotes the regression line. WhenR = ξ1, corresponding to (6b), data
points are shown as� and - - - - denotes the regression line. WhenR = ξ2, corresponding to
(6c), data points shown as1 and – – –denotes the regression line.

Table 3. Lattice mean squared radii exponents and amplitudes for (6a)–(6c) for square and
triangular lattices.

Below pc Abovepc

Lattice Lattice Computed Computed
radius type Exponent exponent ξI,B exponent ξI,A

ξ square ν 1.320± 0.002 0.539± 0.004 1.39± 0.07 0.12± 0.03
ξ2 square ν − β/2 1.233± 0.001 0.385± 0.001 1.05± 0.01 0.13± 0.01
ξ3 square J 0.390± 0.006 0.845± 0.019 0.33± 0.01 0.36± 0.01

ξ triangular ν 1.343± 0.002 0.460± 0.003 1.35± 0.05 0.12± 0.02
ξ2 triangular ν − β/2 1.244± 0.001 0.348± 0.001 1.02± 0.01 0.14± 0.01
ξ3 triangular J 0.359± 0.010 1.085± 0.034 0.32± 0.01 0.44± 0.01

The results for the exponents, their amplitudes and error bars for square and triangular
lattices above and belowpc are summarized in table 3. We should note that the statistical
error bars for both the square and triangular lattices were larger abovepc than below it. The
computedν exponent values for both the square and triangular lattices below and abovepc
are scattered around 1.35 which is close toνexact= 4

3 ≈ 1.333 [1]. In table 3 we observe
that belowpc ν − β/2 ≈ 1.23 for the square and triangular lattices, and that abovepc
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Table 4. Results forpc and amplitudes,ξ1,W , for (7) and (8) for square and triangular lattices.

Data points
Lattice range pc

a ξ1,W
a ξ1,W

b

square belowpc 0.5930± 0.0001 0.522± 0.001 0.516± 0.004
square abovepc 0.594± 0.001 0.13± 0.01 0.14± 0.01
triangular belowpc 0.4996± 0.0001 0.471± 0.001 0.475± 0.004
triangular abovepc 0.501± 0.001 0.14± 0.01 0.15± 0.01

a Value determined using (7).
b Value determined using (8).

ν − β/2≈ 1.03. Yet for both lattices, these values differ by 0.2.
It is worth noting that belowpc, νexact−βexact/2= 91

72 ≈ 1.264 is close to the calculated
values of 1.233 and 1.244 for the square and triangular lattices given in table 3. Furthermore,
D = d − β/ν = d − 2+ 2(ν − β/2)/ν. Sinced = 2, D = 2(ν − β/2)/ν. Using the below
pc values ofν and(ν − β/2) from table 2, we obtainD = 1.868 for the square lattice and
D = 1.853 for the triangular lattice which compares rather well withDexact= 91

48 ≈ 1.896.
For the proposed exponentJ , we note that for both square and triangular lattices below

and abovepc, J ≈ 0.4, which differs from the value of 0 suggested in [1].
Using our numerical results and settingν to νexact, we can calculatepc. We transform

ξ = ξ1,W |pc − p|−ν to

p = pc +Qξ−1/ν (7)

whereQ = −ξ1/ν
1,B for pc > p andQ = ξ

1/ν
1,A for p > pc. In (7), bothpc andQ are

unknown, and we setν to νexact. We can calculatepc andQ from the intercept and gradient
of p versusξ−1/ν . The error bars forξ1,W areν|Q|ν−11Q where1Q is the statistical error
for Q. Using linear regression analysis for (7) and assumingν = νexact and employing data
points of table 2, we calculatedpc and ξ1,w. Table 4 presents results forpc and ξ1,W in
columns 3 and 4, respectively.

If pc is known in addition toνexact, we can calculateξ1,W using the following expression:

ξ1,W = ξ |pc − p|ν . (8)

Settingν = νexact, andpc = 0.5 for the triangular lattice andpc = 0.592 746 for the square
lattice in (8), we calculateξ1,W . Results for this calculation are presented in column 5 of
table 4.

The calculated values for the square lattice for the amplitudes,ξ1,B , belowpc, are 0.539
(table 3), and 0.522 (table 4 column 4) and 0.516 (table 4 column 5); for the triangular
lattice they are 0.460 (table 3), 0.471 (table 4 column 4) and 0.475 (table 4 column 5).
They are close to the value of 0.52 calculated by Aharony and Stauffer [16] for both the
square and triangular lattices, which is different from the value of 0.63 given by Corsten
et al [17]. Furthermore, the amplitude ratiosξ1,B/ξ1,A for both the square and triangular
lattices is about 4 which is also consistent with [16, 17]. Chayeset al [18] gave a ratio of
2 instead of 4 by using a different definition of the correlation length.

3. Bounds on the radius of gyration

The squared radius of gyration,R2
s , is a useful cluster structure quantity. It is a measure

for the mean square distance between two cluster sites and, therefore, it is a measure for
cluster compactness. Yet, just knowing that a given cluster has someR2

s value does not tell
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us how compact or ramified the cluster in question is. In a similar fashion to Domb and
Stoll [11], who proposed a coefficient of compactness,λ, based on the cyclomatic number,
we could define cluster compactness relative to the upper and lower bounds ofR2

s .
The upper bound,R2

s,max, for R2
s occurs when the cluster is linear. SinceR2

s is an
invariant quantity under translation (and rotation), we can place a linear cluster of size
s on the x-axis at x = 1. Using the summation formulae for 1+ 2+, . . . ,+s and
12+ 22+, . . . ,+s2, and (4), we obtain

R2
s,max=

s2− 1

12
. (9)

For larges, R2
s,max can be written as

R2
s,max=

s2

12
(9a)

where (9) and (9a) are true for linear clusters in any dimension.
To determineR2

s,min, the lower bound forR2
s , in two dimensions, we assume that the

most compact cluster of sizes is bounded by a circle of radiusr, whose area is equal to
the area covered by the cluster. For a square lattice, given that the distance between nearest
neighbours is 1, the density of sites is also 1. Therefore, we haves = πr2. For a larges,
we change the summation in (4) into integration and assume that the centre of mass for the
cluster is at the origin. We obtain

R2
s,min =

1

s

∫ 2π

0
dθ
∫ r

0
ρ2ρ dρ = πr4

2s
= s

2π
. (10)

We can also calculate a similarR2
s,min for a simple cubic lattice for the compact cluster

bounded by a sphere. We use now (4) for a sphere whose centre is at the origin. We replace
summation by integration forX(2)µ and noting that the volume of the sphere iss = 4πr3/3,
we obtain

R2
s,min =

1

s

∫ π

0
dθ
∫ 2π

0
dφ
∫ r

0
ρ2 sinθρ2 dρ = 4πr5

5s
= 3

5

(
3s

4π

)2/3

. (11)

We assumed again that the density of sites is 1. For other lattice types, the density of sites
would be higher or lower than 1 depending on the density of sites in a unit square (or cube).
However, the exponent ofs would only depend on the dimension of the lattice.

Equations (10) and (11), apply to a larges only. For small clusters, we employ an
algorithm to computeR2

s,min. This algorithm is based on a recursive representation of (4).
To do that, we expressR2

s in the coordinate system of the centre of the mass of the cluster,
so thatR2

s simplifies to

R2
s =

1

s

d∑
µ=1

∑
i

x2
µ,i (12)

xµ,i is theµth coordinate of theith site of the cluster. Using (4) and adding one more site
to our cluster, we obtain

R2
s+1 =

1

(s + 1)2

d∑
µ=1

[(s + 1)X(2)µ − (X(1)µ )2]. (13)

Writing (13) in terms of the centre of mass of the original cluster of sizes, we get a recursive
relationship forR2

s :

R2
s+1 = s

[
R2
s

s + 1
+
∑d

µ=1 x
2
µ,s+1

(s + 1)2

]
(14)



8466 J Hoshen

Figure 3. Squared radius of gyration for the compact cluster (SRG(min)),R2
s,min, versus cluster

size s for a square lattice, denoted as two dimensional; and cubic lattice, denoted as three
dimensional. Full curves denote algorithm (14) results. Broken curves denote approximate
results given by (10) and (11) for square and cubic lattices, respectively.

wherexµ,s+1 is theµth coordinate of the new cluster sites + 1 given in the coordinate
system of the centre of mass of thes-sized cluster.

We now use recursively (14) to determineR2
s,min. The algorithm starts from a single

site at the origin. It then inspects all empty neighbouring sites around that site such that∑d
µ=1 x

2
µ,2 is minimized. When it finds a site that minimizes (14), the algorithm adds it

to the cluster. The search process is repeated around the cluster for an empty site that
minimizes

∑d
µ=1 x

2
µ,3 etc. Every time

∑d
µ=1 x

2
µ,s+1 is minimized, we make sure that we

minimize it in terms of the coordinates of the centre of the mass of the previous cluster.
The justification for the algorithm is that at every iteration, we minimizeR2

s . However,
such a minimum may be only a local minimum and not a global one. So, at this point,
we should consider the algorithm to be a heuristic algorithm. Yet, when we compare the
algorithm results with the approximate formulae, (10) and (11), forR2

s,min, we obtain good
matches fors > 40 as shown in figure 3.

To measure cluster compactness, we definee as a coefficient of compactness:

e = (R2
s )
−1− (R2

s,max)
−1

(R2
s,min)

−1− (R2
s,max)

−1
. (15)

The value ofe ranges from 0, for the linear cluster, to 1, for the most compact cluster.
For larges, our simulations suggest that for most clusters(R2

s,min)
−1 > (R2

s )
−1� (R2

s,max)
−1

so thate ≈ R2
s,min/R

2
s . Figure 4 displayse for severalp values for clusters grouped by size.

We observe that as the cluster size increases for a givenp, the ratioe decreases, indicating
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Figure 4. Cluster compactness coefficient,e, plotted versus cluster size groupsi such that
2i 6 s < 2i+1 for p = 0.57, 0.58, 0.5875, 0.59, 0.5925 for 45 000× 45 000 lattices.

that the larger clusters are more ramified. On the other hand, clusters of a given size group
become more compact asp increases.

At this point, it would be useful to compare the coefficiente with the coefficientλ given
by Domb and Stoll [11]

λ = b − s + 1

(s1/2− 1)2
. (16)

In (16), b represents the number of bonds in the cluster.b− s+1 is the cyclomatic number
representing the number of independent cycles in the cluster and(s1/2 − 1) represents the
cyclomatic number for the most compact cluster of sizes. The values of bothe andλ range
from 0 to 1. However, the value of 0 forλ does not distinguish between a linear cluster or
a tree-like cluster. In contrast,e = 0 applies only to linear clusters. For tree-like clusters
and other clusters,e > 0. When a cluster achieves maximum compactness, bothλ and e
are equal to 1. For large clusters,λ = 1 for both compact circular clusters and compact
square clusters.e = 1 for only compact circular clusters. Using (15), (9a) and (10) for
compact square clusters, we obtaine = (3− 3/s)/(π − 3/s) ≈ 3/π .

4. Discussion

With the help of the EHK algorithm, we approached the issue of cluster structure by studying
the squared radius of gyration that is derived from the first and second spatial moments of
the cluster. We used the squared radius of gyration to evaluate the correlation length and
related parameters. We had a very good linear fit for the correlation length curve where
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ν = 1.320±0.002 for the square lattice andν = 1.343±0.002 for the triangular lattice below
pc. These values are close to the exact value ofν of 4

3 ≈ 1.333. Since the statistical error
bars are relatively small (0.002), systematic errors are the likely source for the differences
between the calculatedν values andνexact. Examples of sources for systematic errors are
pseudorandom number generators, the ranges of values ofp used in the simulation, and the
finite distance ofp from the threshold. Nevertheless, because both calculatedν values for
the square and triangular lattices were determined by the same method, the reasons for the
0.023 difference between these two values (11.5 error bars) requires further study.

The finite sizes and boundary shape of the lattices is likely to be another source of
systematic errors. It appears that the boundary effects are more pronounced for large
clusters cut off by the boundary. A simple example illustrates this point. Atp = 1
in two dimensions, the squared correlation length for a square lattice with finite square
boundaries isξ2 = s/6. On the other hand, according to (10), the squared correlation
length for a square lattice bounded by a finite circle isξ2 = s/(2π). The large clusters are
significant contributors to the numerator of(6a), and when they are cut, the value of the
correlation length could be significantly affected. There are several approaches that could
be used to address the problem. In one approach, we could remove the contributions of all
clusters that touch the lattice boundary as was described in [16] for the Leath [19] algorithm
calculations. Alternatively, we could use cyclic boundary conditions to extend the clusters
across the boundary. Another approach would be to use only smallerp values so that there
would be fewer large clusters stretching across the boundary.

The focus of this paper has been on low-order cluster spatial moments. Since the EHK
algorithm can calculate higher moments for large lattices, the question is what new physical
information can be derived from these higher-order moments. While raw moments are not
very useful quantities by themselves, quantities that can be derived from them such as the
squared radius of gyration are useful. For higher moments to become useful, there is a
need to find quantities similar to the radius of gyration and express them in terms of these
higher moments. These quantities should be defined with respect to the centre of mass of
the cluster, thus, making them invariant to translation.
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