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Abstract. The squared radius of gyration of percolation clusters are determined in terms of the
clusters’ second spatial moments using the enhanced Hoshen-Kopelman algorithm for square
and triangular lattices containing@®5 x 10° sites. Correlation length exponents and related
exponents as well as their corresponding amplitudes are calculated in terms of the squared radius
of gyration above and below the percolation threshold. A coefficient for cluster compactness that
is based on the squared radius of gyration of a cluster is introduced. That coefficient is compared
with a similar coefficient of compactness that is based on the cluster cyclomatic number.

1. Introduction

Since the introduction of percolation theory, the focus of cluster analysis in Monte Carlo
simulation has been on quantities that can be derived from cluster sizes [1]. Cluster
structure or shape information has received somewhat less attention, possibly, because the
computational tools for calculating structure parameters are not as powerful as those that are
used for determining cluster sizes. Cluster structure calculations usually involve relatively
small lattices when compared with cluster size calculations which very often employ lattices
containing 16 sites or more. For example, Rapaport [2] reported cluster size calculations
for a lattice containing 225 x 10! sites.

A very important cluster structure parameter is the squared radius of gyration, which is
a measure for the mean distance between two sites belonging to the same cluster. Stauffer
and Aharony [1] suggested a relationship between the radius of gyration and the fractal
dimension of the lattice. They also suggested relationships between the radius of gyration
and the correlation length and other related squared distance parameters. Other researchers
have provided us with examples of computed cluster structure parameters, which include
perimeters [3], correlation length [4], backbone perimeter [5], and spanning lengths [6]. A
more recent study focuses on exponents for the end-to-end distance distribution between
two cluster sites at criticality [7].

Quandt and Young [8] calculated the gyration tensor to determine the cluster asphericity
parameters of Rudnic and Gaspari [9] for percolation and Ising clusters. They applied the
Hoshen—Kopelman (HK) [10] algorithm to identify clusters. Yet, in their calculations, they
only studied relatively small percolation clusters of sizes 5-4096.

Domb and Stoll [11] introduced the cyclomatic number as a structure parameter. They
used the cyclomatic number, which represents the number of independent cycles in a cluster,
to define a coefficient of cluster compactness.

1 E-mail address: jhoshen@worldnet.att.net

0305-4470/97/248459+11$19.5@C) 1997 IOP Publishing Ltd 8459



8460 J Hoshen

Recently, Hosheret al [12] introduced the enhanced HK (EHK) algorithm for the
structural analysis of clusters in binary lattices. The EHK algorithm was further enhanced
for multiple colour image processing [13]. This enhanced algorithm can be used to calculate
various cluster structure parameters in large lattices with the computational efficiency of the
original HK algorithm [10]. The original HK algorithm makes a single pass through the
lattice inspecting each site sequentially and assigning it with a cluster label. Each cluster
in the lattice is identified by one or more labels. The EHK algorithm generalizes the HK
method of cluster size calculation to the calculation of structural parameters such as spatial
moments, cluster bounding rectangles and perimeters of all clusters in the lattice in a single
pass [12]. To enable the EHK analysis of very large lattices while storing only a small
fraction of the lattices in the computer’s memory, we have used the label recycling method,
denoted as option (c) in [10].

Using the EHK algorithm, in section 2, we provide results for the squared radius of
gyration calculations for lattices containingd25 x 10° sites where the squared radius of
gyration is determined from the clusters’ spatial moments. We use the squared radius of
gyration to calculate the correlation length and other parameters as suggested by Stauffer and
Aharony [1]. In section 3, we introduce a cluster compactness coefficient, which is based
on the squared radius of gyration, and compare it with the cyclomatic number coefficient
of Domb and Stoll [11]. In section 4, we discuss our computation results.

2. The squared radius of gyration

A general expression for cluster spatial momems, in d dimensions is

d
Mi(m(D), m@).....m(d) =Y [xra) @)
iek p=1
wherex, (i) denotes the.th coordinate of théth site of thekth cluster andn(u) is the
exponent for ther,, coordinate. When ak: (1) = 0, (1) represents the zero moment of the
cluster. This moment denotes the cluster size. The first cluster moment, which defines the
cluster's centre of mass, for theth coordinate is

M (m(1) =0,m2)=0,....m(u)=1,...,m(d) =0). (2)

In a similar fashion, the second spatial cluster moment can be defined. In two dimensions,
this would correspond te?, y? andxy terms.
Using the cluster moments, we can calculate the squared radius of gyr@fiogiven

by:
1
R3=?Z|ri—r_/|2 ©))
ij

wheres is the size of the cluster; andr; are the positions of sitesand j belonging to
the cluster. The double summation is carried ovet ahd j sites of the cluster. It can be
shown thatR? can be given in terms of the cluster first and second moments [12]:

l d
RY= 5D IsX2 = (X)) @)
n=1

where X = 3", x,,(i) is the first moment an&® = )", x2(i) is the second moment.
In the remainder of this section, we shall use the EHK algorithm calculation of the
squared radius of gyration to test the various relationships for the radius of gyration given
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Figure 1. In(RSZ) versus Irgs) for p = 0.592 and for cluster sizes 100060s > 30000 for
45000x 45000 lattice.

Table 1. D* values for some values for a square lattice.

Number
)4 of clusters D*
0.580 1001 (B87+ 0.022
0.585 4064 1230+ 0.005
0.590 4125 715+ 0.004
0.592 1975 1782+ 0.005

by Stauffer and Aharony [1]. They suggest that at the percolation threshold, the following
relationship exists betweeR? and s

R? o sY/P 5)

where D is the fractal dimension.

To test relationship (5), using the EHK algorithm, we computédalues for clusters on
a 45000x 45 000 simulated square lattice. Figure 1 displays the result of this computation
for p = 0.592 and for cluster sizes 100060 s > 30000. The values of the exponent
D*, which were determined from the sloggD* = T~1) of the line corresponding to a
logarithmic transformation of (5), are given in table 1 joe= 0.58, 0.585, 0.59, 0.592. (We
denote the exponents @ to distinguish them fronD, which is defined forp..) Clearly,
the D* values increase as the percolation threshold is approacheg.=A0.592 the mean
value of D* is 1.782 indicating a slow convergence to thg; value of% ~ 1.896 [1].
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D* and other parameters reported in this paper were calculated using linear regression
analysis. The error bars of these parameters were derived from the standard deviations in
the linear regression coefficients [14]. For example, the error\dat for the exponeniD*
is T~?>AT whereAT is the error bar for the gradiefit of the regression line.

A Windows 95 166 MHz Pentiufi PC was used for all EHK algorithm computations.

The algorithm was implemented 6. The computation time for each Monte Carlo run

on a 45000x 45000 lattice took approximately 60 min and consumed about 3 MB of
RAM. In all simulations free boundary conditions were used. In the simulations, we
used a pseudorandom number generator suggested by Knuth [15]. That generator has a
pseudorandom number sequence cycle that is at I82st 2 long.

Stauffer and Aharony [1] suggested three different definitions of a lattice averaged
squared radius given in terms Bf. These include the correlation lenggf, and two other
radii, which we denote as; and&Z, where

_ ZZ‘Y(Rf)szns

‘%‘2 - Z s2n ] (6a’)
2 ‘R? s

g = 2 (60)
2 (R?)n,

g = 22, (60)

Below p. the summation is carried over all clusters. Abaowe the contribution of the
largest cluster is excluded from the summatien.denotes the number of clusters of size
(R?) stands for the mean squared radius of gyration over all clusters of sMear p,, the
following relationships are expected to hofd= &1 w|p — pe| ™", &2 = Ea.w|p — pe| VP2
andé& = & w|p — p.|~’. v and B are the critical exponents for the correlation length and
the infinite cluster probability, respectively. stands for a proposed exponent {6t). The
subscriptW for the amplitudes w, &, w andé&s w is set toB if p < p. and is set tA if
P = Dc-

To calculate the amplitudes and exponents&of, and &3, 92 Monte Carlo runs were
made on square and triangular lattices containing 45080000 sites below and aboye.
Table 2 provides a summary for these run sequences. To ensure that pseudorandom number
sequences do not overlap within a run sequence, the last random number seed of a run was
used to generate a new seed for the next run. Square boundaries were used for the square
lattice simulations and rhombus boundaries were used for the triangular lattice simulation.
In the calculation, we usegd. = 0.5 for the triangular lattice, ang. = 0.592 746 for the
square lattice [1]. Figure 2 gives a log—log plot foré, andé&s for the square lattice data
below p.. The amplitudeg, w and their error bars are determined from the interdéutf
the regression line, such thaty = exp(V) and Ag; w = exp(V)AV wherel = 1,2, 3
and AV is the statistical error foV [14].

Table 2. Simulation run sequences.

Lattice Data points p range
square 32 0.52-0.58
square 19 0.601-0.624
triangular 22 0.425-0.48

triangular 19 0.51-0.5325




Percolation and the radius of gyration 8463

wn

<
—
T o
£

o

L

in(Dp)

Figure 2. In(R) versus IiiDp) whereDp = |p. — p| for 32 runs,p =0.52-0.58 (some values
are repeated) and 4506045 000 lattice size. WheR = &, corresponding to ¢, data points
shown asx and —— denotes the regression line. When= &1, corresponding to (9, data
points are shown asl and - - - -denotes the regression line. Wh&n= &;, corresponding to
(6¢), data points shown a& and — — —denotes the regression line.

Table 3. Lattice mean squared radii exponents and amplitudes fo(6c) for square and
triangular lattices.

Below p, Above p,
Lattice Lattice Computed Computed
radius  type Exponent exponent &1B exponent  &7.4
& square v 1.320+0.002 0539+0.004 139+0.07 012+0.03
& square v—p/2 1233+0.001 Q385+0.001 105+0.01 013+0.01
&3 square J 0.390+ 0.006 0845+0.019 033+0.01 036+0.01
& triangular v 1.343+0.002 Q460+ 0.003 135+0.05 012+0.02
& triangular v — /2 1244+ 0.001 Q348+0.001 102+0.01 014+0.01
&3 triangular J 0.359+ 0.010 1085+0.034 032+0.01 044+0.01

The results for the exponents, their amplitudes and error bars for square and triangular
lattices above and below,. are summarized in table 3. We should note that the statistical
error bars for both the square and triangular lattices were larger ghaban below it. The
computedv exponent values for both the square and triangular lattices below and pbove
are scattered around 1.35 which is closevd@c = g ~ 1.333 [1]. In table 3 we observe
that belowp. v — 8/2 ~ 1.23 for the square and triangular lattices, and that abgve
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Table 4. Results forp, and amplitudessy w, for (7) and (8) for square and triangular lattices.

Data points
Lattice range pe? Ew? ELwP
square belowp, 0.5930+ 0.0001 0522+ 0.001 Q516+ 0.004
square above,. 0.594+ 0.001 Q13+ 0.01 014+0.01
triangular  belowp, 0.4996+ 0.0001 0471+0.001 Q475+ 0.004

triangular  abovep, 0.501+ 0.001 Q014+ 0.01 015+ 0.01

@ Value determined using (7).
b Value determined using (8).

v — B/2~ 1.03. Yet for both lattices, these values differ by 0.2.

It is worth noting that below,., vexact— Bexact/2 = % ~ 1.264 is close to the calculated
values of 1.233 and 1.244 for the square and triangular lattices given in table 3. Furthermore,
D=d—-B/v=d—2+2v—pB/2)/v. Sinced =2, D = 2(v — B/2)/v. Using the below
p. values ofv and (v — 8/2) from table 2, we obtairD = 1.868 for the square lattice and
D = 1.853 for the triangular lattice which compares rather well Witly = % ~ 1.896.

For the proposed exponent we note that for both square and triangular lattices below
and abovep,, J =~ 0.4, which differs from the value of 0 suggested in [1].

Using our numerical results and settingo vexac; We can calculate,.. We transform

E =& wlp.—plI™" tO
p=pc+ Q& (7

where Q = —si/g for p. > pand Q = Ei{;’ for p > p.. In (7), bothp. and Q are
unknown, and we set to vexaet We can calculate,. and Q from the intercept and gradient
of p versust ~¥/*. The error bars fog; y arev|Q|"~*AQ whereA Q is the statistical error
for Q. Using linear regression analysis for (7) and assuning vexact and employing data
points of table 2, we calculateg, and&; ,,. Table 4 presents results fer. and &1y in
columns 3 and 4, respectively.

If p. is known in addition taexac; We can calculaté; y using the following expression:

& w =E&lp. — pl”. (8)

Settingv = vexacy @and p. = 0.5 for the triangular lattice ang, = 0.592 746 for the square
lattice in (8), we calculatéy . Results for this calculation are presented in column 5 of
table 4.

The calculated values for the square lattice for the amplituges, below p., are 0.539
(table 3), and 0.522 (table 4 column 4) and 0.516 (table 4 column 5); for the triangular
lattice they are 0.460 (table 3), 0.471 (table 4 column 4) and 0.475 (table 4 column 5).
They are close to the value of 0.52 calculated by Aharony and Stauffer [16] for both the
square and triangular lattices, which is different from the value of 0.63 given by Corsten
et al [17]. Furthermore, the amplitude ratigg 3 /£, 4 for both the square and triangular
lattices is about 4 which is also consistent with [16, 17]. Chagteal [18] gave a ratio of
2 instead of 4 by using a different definition of the correlation length.

3. Bounds on the radius of gyration

The squared radius of gyratio®?, is a useful cluster structure quantity. It is a measure
for the mean square distance between two cluster sites and, therefore, it is a measure for
cluster compactness. Yet, just knowing that a given cluster has #melue does not tell
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us how compact or ramified the cluster in question is. In a similar fashion to Domb and
Stoll [11], who proposed a coefficient of compactnessyased on the cyclomatic number,
we could define cluster compactness relative to the upper and lower bouds of

The upper boundR? .. for R? occurs when the cluster is linear. Sin& is an
invariant quantity under translation (and rotation), we can place a linear cluster of size

s on the x-axis atx = 1. Using the summation formulae for & 2+, ..., +s and
12 + 224 ..., +s2, and (4), we obtain
s2 -1
For larges, R? . can be written as
2 s
Rs max — TZ (9a)

where (9) and (8) are true for linear clusters in any dimension.
To determineRr? ., the lower bound forR?, in two dimensions, we assume that the

most compact cluster of sizeis bounded by a circle of radius whose area is equal to

the area covered by the cluster. For a square lattice, given that the distance between nearest
neighbours is 1, the density of sites is also 1. Therefore, we haverr2. For a larges,

we change the summation in (4) into integration and assume that the centre of mass for the

cluster is at the origin. We obtain

2 art
Ymm / dG/ ppdp_—zg. (20)

We can also calculate a simil&? . for a simple cubic lattice for the compact cluster
bounded by a sphere. We use now (4) for a sphere whose centre is at the origin. We replace

summation by integration foK}? and noting that the volume of the sphere is: 47r3/3,

we obtain
A 35 \%3
Ymm / dQ/ dd)/ p?sindp?dp = = (471) . (11)

We assumed again that the density of sites is 1. For other Iatt|ce types, the density of sites
would be higher or lower than 1 depending on the density of sites in a unit square (or cube).
However, the exponent af would only depend on the dimension of the lattice.

Equations (10) and (11), apply to a largeonly. For small clusters, we employ an
algorithm to computerR? ... This algorithm is based on a recursive representation of (4).
To do that, we expres;Rs2 in the coordinate system of the centre of the mass of the cluster,
so thatR? simplifies to

1 d
= XX (12)

x,,i is the uth coordinate of théth site of the cluster. Using (4) and adding one more site
to our cluster, we obtain

R%, = G +1)2 Z[<s+1)x<2> X (13)

Writing (13) in terms of the centre of mass of the original cluster of sjzee get a recursive
relationship forr?:

R2

RAZ Zdzl'xzx 1
[ 2 } (14)

s+1 (s +1)2
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Figure 3. Squared radius of gyration for the compact cluster (SRG(mRﬁ)mn, versus cluster

size s for a square lattice, denoted as two dimensional; and cubic lattice, denoted as three
dimensional. Full curves denote algorithm (14) results. Broken curves denote approximate
results given by (10) and (11) for square and cubic lattices, respectively.

wherex, ;11 is the uth coordinate of the new cluster site+ 1 given in the coordinate
system of the centre of mass of thesized cluster.

We now use recursively (14) to determim .. The algorithm starts from a single
site at the origin. It then inspects all empty neighbouring sites around that site such that
ZZ=1X/2L,2 is minimized. When it finds a site that minimizes (14), the algorithm adds it
to the cluster. The search process is repeated around the cluster for an empty site that
minimizes 0 _; x2 5 etc. Every time}_¢_;x2_ ., is minimized, we make sure that we
minimize it in terms of the coordinates of the centre of the mass of the previous cluster.

The justification for the algorithm is that at every iteration, we minimiZe However,
such a minimum may be only a local minimum and not a global one. So, at this point,
we should consider the algorithm to be a heuristic algorithm. Yet, when we compare the
algorithm results with the approximate formulae, (10) and (11),1%@&,], we obtain good
matches fors > 40 as shown in figure 3. '

To measure cluster compactness, we defias a coefficient of compactness:

_ (Rsz)il - (Rimax)71
(R? i)t — (R2

_1'
s,min) ‘,max)

(15)

e

The value ofe ranges from 0, for the linear cluster, to 1, for the most compact cluster.
For larges, our simulations suggest that for most cluste®$ ;)" > (R?) ™1 > (R? 0"
so thate ~ R? . /R?. Figure 4 displays for severalp values for clusters grouped by size.

s,min
We observe that as the cluster size increases for a giyéime ratioe decreases, indicating
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Figure 4. Cluster compactness coefficiert, plotted versus cluster size groupssuch that
2" < s < 2+ for p = 0.57,0.58,0.5875 0.59, 0.5925 for 45000« 45000 lattices.

that the larger clusters are more ramified. On the other hand, clusters of a given size group
become more compact gsincreases.

At this point, it would be useful to compare the coefficienith the coefficient. given
by Domb and Stoll [11]

_b-s+1
- (S1/2_1)2'

In (16), b represents the number of bonds in the clusker.s + 1 is the cyclomatic number
representing the number of independent cycles in the clustesaffd— 1) represents the
cyclomatic number for the most compact cluster of siz&dhe values of botla and range
from 0 to 1. However, the value of O far does not distinguish between a linear cluster or
a tree-like cluster. In contrast,= 0 applies only to linear clusters. For tree-like clusters
and other clusters; > 0. When a cluster achieves maximum compactness, bathd e

are equal to 1. For large clusters,= 1 for both compact circular clusters and compact
square clusterse = 1 for only compact circular clusters. Using (15)af%nd (10) for
compact square clusters, we obtaig= (3 — 3/s)/(w — 3/s) ~ 3/m.

(16)

4. Discussion

With the help of the EHK algorithm, we approached the issue of cluster structure by studying
the squared radius of gyration that is derived from the first and second spatial moments of
the cluster. We used the squared radius of gyration to evaluate the correlation length and
related parameters. We had a very good linear fit for the correlation length curve where
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v = 1.3204+0.002 for the square lattice and= 1.343+0.002 for the triangular lattice below

pe. These values are close to the exact value of g ~ 1.333. Since the statistical error

bars are relatively small (0.002), systematic errors are the likely source for the differences
between the calculated values andvexac: Examples of sources for systematic errors are
pseudorandom number generators, the ranges of valyesiséd in the simulation, and the

finite distance ofp from the threshold. Nevertheless, because both calculatedues for

the square and triangular lattices were determined by the same method, the reasons for the
0.023 difference between these two values (11.5 error bars) requires further study.

The finite sizes and boundary shape of the lattices is likely to be another source of
systematic errors. It appears that the boundary effects are more pronounced for large
clusters cut off by the boundary. A simple example illustrates this point. pAt 1
in two dimensions, the squared correlation length for a square lattice with finite square
boundaries ist? = s/6. On the other hand, according to (10), the squared correlation
length for a square lattice bounded by a finite circléds= s/(2r). The large clusters are
significant contributors to the numerator @), and when they are cut, the value of the
correlation length could be significantly affected. There are several approaches that could
be used to address the problem. In one approach, we could remove the contributions of all
clusters that touch the lattice boundary as was described in [16] for the Leath [19] algorithm
calculations. Alternatively, we could use cyclic boundary conditions to extend the clusters
across the boundary. Another approach would be to use only smpallalues so that there
would be fewer large clusters stretching across the boundary.

The focus of this paper has been on low-order cluster spatial moments. Since the EHK
algorithm can calculate higher moments for large lattices, the question is what new physical
information can be derived from these higher-order moments. While raw moments are not
very useful quantities by themselves, quantities that can be derived from them such as the
squared radius of gyration are useful. For higher moments to become useful, there is a
need to find quantities similar to the radius of gyration and express them in terms of these
higher moments. These quantities should be defined with respect to the centre of mass of
the cluster, thus, making them invariant to translation.
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